生物流化床應用于廢水處理已有近30年的歷史, 在多種污(廢)水處理場合已得到了廣泛應用.由于生物流化床在水處理應用方面具有微生物相多樣化、微生物濃度高、耐沖擊負荷能力強、比表面積大、氧傳質效率高等優點, 國內外研究者一直對生物流化床的填料設計、結構優化及其新型流化床的開發有著濃厚的興趣, 但傳統結構的生物流化床在應用中仍存在如下問題:固液分離時間大于反應時間的結構不合理現象;大型化的瓶頸問題;反應器停止后再啟動流化困難;固液接觸面摩擦較弱易造成載體生物膜細胞傳質濃度邊界層趨向穩定而制約傳質效率;相間相對流動速度差小, 作用于生物膜的水力剪切力較弱, 載體生物膜新舊菌體更新速率慢, 影響了生化代謝效率等.針對傳統生物流化床的特點, 本課題組將四邊形生物流化床、膜生物反應器、折流式厭氧反應器與生物流化床相結合, 設計出一種新型生物流化床—四邊形折流式膜生物流化床.反應器整體為長方體結構且保留了傳統生物流化床塔式結構;下部采用了折流板與導流錐設計出一個進水角度, 利用該角度來沖擊反應器底部填料, 提高了填料的利用率, 實現了再啟動流化容易;上部采用了浸沒式膜組件, 利用氣、固、液三相沖刷膜組件, 降低了膜污染, 解決了載體流失等問題.
目前, 關于生物流化床的動力學研究大多是運用脈沖響應法、數值模擬、壓差法和光纖探頭測速法等, 這些研究成果較好地揭示了三相生物流化床的動力學特性, 但浸入式測試技術具有時空分辨率低、標定曲線具有不確定性等局限性, 對流場干擾是最大局限;數值模擬大多認為固相為液體的一部分, 把氣液雙流體模型應用于氣、固、液三相流, 模擬和模型準確度不高, 均不能較真實地反應液相流態.粒子圖像測速技術(Particle Image Velocimetry, 簡稱PIV)作為一種對流場無干擾的瞬態全流場測試手段, 既具備單點測量技術的分辨率和精度, 又能獲得流場的整體結構和瞬態圖像.PIV的基本原理是在流場中布撒一些與流體跟隨性良好且具有良好的示蹤性和反光性的示蹤粒子, 用激光照射所測區域, 使用CCD相機獲取示蹤粒子的瞬時運動圖像, 設置適當的跨幀時間, 對拍攝的兩幅連續的圖像進行互相關計算, 根據兩幀圖像的位移和時間間隔, 從而得到流場的速度場.近十幾年來, PIV被廣泛應用在氣液兩相流流場測量中, 例如, 將PIV技術與激光誘導熒光法結合后測定了氣液兩相流的速度場, 并獲得了氣泡流態特性;應用PIV技術測試了多孔同時曝氣對近膜面液相速度場的影響.通過這些研究證明了PIV的準確性和可靠性, 為利用PIV分析四邊形折流式膜生物流化床內液相流場特性, 特別是在有少量填料時液相流場可視化研究指明了前景.海南生活污水處理設備技術系統
本文基于取樣法和PIV技術, 對四邊形折流式膜生物流化床在不同進水流量和曝氣強度組合的工況下的填料濃度和液相流場特性進行測量, 同時對填料濃度、流場特性和膜污染三者之間的關系進行剖析, 尋求流化床運行過程中節能的結構與優化的操作條件.
2 實驗裝置和方法(Experiments) 2.1 實驗系統
四邊形折流式膜生物流化床實驗測試系統的流程如圖 1a所示, 主要由四邊形折流式膜生物流化床、進出水系統、激光系統、CCD攝像系統、膜組件、曝氣系統和圖像處理系統等部分組成.流化床為長方體的透明玻璃體, 結構尺寸為300 mm×150 mm×950 mm(長×寬×高), 總容積為42.75 L, 折流板底部縫隙高度為72 mm, 傾斜角度為35°, 導流錐傾斜角度為30°.膜組件為中空纖維膜超濾膜組件, 采用聚偏氟乙烯材質制成, 膜壁厚40~50 μm, 微孔平均孔徑為0.1~0.2 μm, 膜尺寸為40 mm×300 mm, 標準膜通量為200 L·h-1.曝氣系統中曝氣管管徑為5.8 mm, 曝氣頭尺寸為34 mm×43 mm, 曝氣孔孔徑為0.1~0.3 mm.實驗中為防止膜組件和曝氣頭的擺動, 將曝氣頭固定在膜組件正下方的流化床底部, 膜組件通過自制T型支架固定, 且進水管、曝氣頭和膜組件布置在同一軸線上.
圖 1 四邊形折流式膜生物流化床實驗測試系統流程圖(a)、拍攝分區(b)和激光斷面分布圖(c) (1.出水箱, 2.蠕動泵, 3.激光電源, 4.激光器, 5.同步器, 6.氣體流量計, 7.空氣壓縮機, 8.膜組件, 9.氣泡, 10.椰殼活性炭, 11.進氣管, 12.進水管, 13.導流錐, 14.液體流量計, 15.潛水泵, 16.計算機, 17.相機, 18.四邊形流折流式膜生物流化床, 19.曝氣頭, 20.激光斷面)
2.2 實驗用水和填料
實驗用水采用自來水.填料采用椰殼活性炭, 其外觀為黑色不定型顆粒(粒徑約為0.4~2.8 mm), 堆積密度為604 kg·m-3, 測定填料濃度時, 填充密度為6%的流化床體積.PIV實驗時, 流化的活性炭會對激光斷面和相機拍攝形成阻擋, 使得無法正常拍攝, 氣、固、液三相流態可視化難度較大, 需進行可視化測試.根據本次實驗范圍, 選擇最大進水流量200 L·h-1和最大曝氣強度1.05 m3·h-1進行測試, 填充密度測試為0.1%~1.0%, 當填充密度為0.4%時, 降流區和升流區各取樣點中濃度最大值為2.063 mg·L-1.激光拍攝過程中未出現光源呈黑色條狀現象(黑色條狀認定為激光光源被阻擋), 且拍攝和分析所得圖片均無空白區域.為保證實驗獲得較高的分辨率, 選取填充密度為0.5%, 實驗時為防止活性炭對示蹤粒子的影響, 每3~4 h更換一次活性炭.??谖鬯幚?。
2.3 PIV測試系統
實驗中采用丹麥Dantec公司生產的PIV系統, 包括:Litron DualPower 200-15固體激光器, 兩個激光器發射器輸出綠色片光源, 激光束的波長為532 nm, 每個脈沖能量為200 mJ, 脈寬為6~8 ns;FlowSense EO CCD相機, 圖像像素為2048×2048, 采樣速率為16幀·s-1;Timer Box同步器, 可以實現外部脈沖信號對系統的同步觸發.示蹤粒子選用配套的PMMA-Rhodamine B-Particles(羅丹明B熒光聚合物顆粒), 粒徑為20~50 μm, 實驗濃度控制在100 mg·L-1.該粒子具有對流場良好的跟隨性(Paffel et al., 1998;嚴敬等, 2005), 適用于多相流, 示蹤粒子對液相速度和粘度的影響可以忽略.
2.4 實驗方案
填料濃度測試時, 分別在四邊形折流式膜生物流化床升流區和降流區各中軸線上高度分別為200、400和600 mm處進行一定體積(ν)的混合液取樣, 干燥后稱量其中的填料量ω, 則填料的濃度(施漢昌等, 2012)為ω/ν, 相同工況情況下每次取樣3次并求得平均值.PIV實驗在曝氣強度分別為0.25、0.45、0.65、0.85和1.05 m3·h-1和進出水流量分別為50和200 L·h-1組合的工況下依次進行, 實驗時流化床有效容積為31.95 L, 即有效水深710 mm.實驗中激光光源從反應器的左側進入, 如圖 1a所示, CCD相機放置在流化床的正面, 垂直于激光片光源方向.因CCD相機的拍攝范圍有限, 故流場測量區域在保證獲得較高分辨率的前提下, 拍攝區域(圖 1b)選擇為下部區域(282 mm×235 mm)、中部區域(282 mm×235 mm)和上部區域(282 mm×235 mm).激光斷面選取距膜面15 mm的激光斷面位置(圖 1c), 實驗中依次對同種工況下3個截面進行拍攝, 每個工況均連續記錄10000幅圖像序列, 對拍攝的圖像進行自適應互相關計算, 得到流場中的速度分布信息, 結果表明, 流場速度測量誤差(Feng et al., 2010)小于2 mm·s-1.
3 實驗結果與分析(Results and discussion) 3.1 四邊形折流式膜生物流化床填料濃度的分布特性
圖 2給出了流化床填料濃度的變化曲線.從圖 2a可以看出, 進水流量為50 L·h-1時, 升流區填料濃度隨曝氣強度的增加而增長.進水流量為200 L·h-1時, 填料濃度隨曝氣強度的增加呈先上升后下降趨勢.升流區在相同曝氣強度的工況下, 填料濃度隨進水流量的增加呈增加趨勢.從圖 2b可以看出, 進水流量為50 L·h-1時, 降流區填料濃度隨曝氣強度的增加而增長, 曝氣強度為1.05 m3·h-1時, 降流區填料濃度達到峰值;曝氣強度分別為0.25、0.65、0.85和1.05 m3·h-1時, 填料濃度隨流化床高度的降低而下降.進水流量為200 L·h-1時, 降流區填料濃度隨曝氣強度的增加呈先上升后下降趨勢;曝氣強度分別為0.25、0.45、0.65和0.85 m3·h-1時, 填料濃度隨流化床高度的降低呈先下降后上升趨勢.降流區在相同曝氣強度的工況下, 流化床填料濃度隨進水流量的增加呈增加趨勢.
流化床在相同進水流量工況下, 曝氣強度是影響填料濃度變化的主要因素;在相同曝氣強度工況下, 進水流量是影響填料濃度變化的主要因素.在多數工況下, 流化床中部區域為稀相區域;曝氣強度和進水流量的匹配可使流化床的填料濃度達到最高值;在相同工況下升流區的填料濃度均大于降流區的濃度;進水流量和曝氣強度為200 L·h-1、0.65 m3·h-1工況下的填料濃度與50 L·h-1、1.05 m3·h-1工況下的填料濃度較接近.可見, 進水流量的增加加速了降流區填料的流化, 進而加速整個流化床的填料流化;且不同進水流量和曝氣強度組合的工況下, 可使填料濃度達到一致.分析其原因, 由于折流板的存在, 折流板上部區域為曝氣死區, 實驗中發現大量的填料在升流區形成了內循環, 且存在諸多小循環, 即由于折流板的存在, 折流式膜生物流化床為內外雙循環和諸多小循環(圖 2c);另一原因是由于進水管的布置會使底部堆積的填料進行向左的沖擊, 當沖擊到曝氣區或環流區后, 填料將隨氣液上升形成環流.填料的流態化使得填料之間、填料與膜組件之間相互摩擦, 并使液相流態更加紊亂, 填料濃度和液相紊亂程度越大, 起到沖刷膜組件的作用越大, 能較大程度地抑制膜組件表面沉積層的形成, 有利于控制膜污染, 即填料濃度是膜污染控制一個重要因素.因此, 設計時膜組件放置高度可選擇為折流式膜生物流化床升流區的上部靠近自由液面區域.
【免責聲明】:文章來自網絡,我們對文中陳述觀點判斷保持中立,并不對文章觀點負責。僅供讀者參考。版權屬于原作者。